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Abstract

In this paper, we propose a weakly supervised method for
simultaneously learning scene parts and attributes from a
collection of images associated with attributes in text, where
the precise localization of the each attribute left unknown.
Our method includes three aspects. (i) Compositional scene

configuration. We learn the spatial layouts of the scene
by Hierarchical Space Tiling (HST) representation, which
can generate an excessive number of scene configurations
through the hierarchical composition of a relatively small
number of parts. (ii) Attribute association. The scene at-
tributes contain nouns and adjectives corresponding to the
objects and their appearance descriptions respectively. We
assign the nouns to the nodes (parts) in HST using non-
maximum suppression of their correlation, then train an
appearance model for each noun+adjective attribute pair.
(iii) Joint inference and learning. For an image, we com-
pute the most probable parse tree with the attributes as an
instantiation of the HST by dynamic programming. Then
update the HST and attribute association based on the in-
ferred parse trees. We evaluate the proposed method by (i)
showing the improvement of attribute recognition accuracy;
and (ii) comparing the average precision of localizing at-
tributes to the scene parts.

1. Introduction
In the past decade, researchers have made significant

progress in scene categorization [1, 16, 18]. Most of the

popular methods first exact features, such as scene gist [1],

spatial pyramid [16] and Tangram [8], then feed to SVM

classifiers. In contrast to basic level scene categorization,

natural scenes often contain semantic details that might be

attributed to more than one category. Thus the interest in

studying the scene attributes [6, 7] has been growing. A

typical recent work is by Patterson and Hays [7] which iden-

tified 102 scene attributes through human perception exper-

iments and trained 102 independent classifiers. Such meth-

ods obtained interesting results and are potentially useful

for image retrieval, however, they have some obvious lim-

itations: the attributes are not associated with the specific

image regions (called “scene parts” in the following), and

not explicitly linked to the appearance models of the parts.

In this paper, we propose a weakly supervised method

to study the scene configuration and attribute localization.

As shown in Fig. 1, our approach begins with a collection

of images with attributes in text (Fig.1(a)). The training

images are labeled with the presence of several attributes,

with the precise localization of the attributes left unknown.

Our method includes three aspects as below.

(i) Hierarchical scene configuration and part learn-
ing. A typical scene category, e.g. countryside or city

street, contains a huge number of configurations with ob-

jects (buildings, road etc.) and regions (sky, field etc.) in

different layouts. To learn the meaningful hierarchy and

scene parts, we utilize the Hierarchical Space Tiling (HST)

[17] to represent the scenes. As shown in the top row of

Fig.1(b), the HST quantizes the huge space of scene con-

figurations by a stochastic And-Or Tree (AOT) representa-

tion where an And-node represents a way of decomposing

the node, an Or-node represents alternative decompositions,

and the terminal nodes are primitive rectangles correspond-

ing to the scene parts. Through a learning-by-parsing strat-

egy, we can learn the HST/AOT model and a scene part

dictionary, in which each scene part corresponds to a mean-

ingful region in the scenes such as sky, building, road, field.

(ii) Attribute association. Scene attributes, defined by

the text descriptions, consist of the nouns (e.g. field, sky)

and adjectives (e.g. green, cloudy), corresponding to the ob-
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Figure 1. Flowchart of our method. (a) Input images and texts. (b) Iterative learning process including the learning of scene configuration

and attribute association, and the joint inference (text in square brackets denotes the inferred attributes). (c) Output attribute localization.

jects/regions and their appearance respectively. The nouns

are assigned to the learned scene part dictionary accord-

ing to an association matrix as shown in the bottom left of

Fig.1(b). The association matrix measures the probability

of a noun and a scene parts appearing simultaneously in the

training set and it can be achieve by a non-maximum sup-

pression. Each noun has a mixture of appearance models

corresponding to the adjectives, e.g. the sky may be blue,

cloudy, dust-hazed or overcast (bottom right of Fig.1(b)).

(iii) Joint inference and learning. Given an image, we

jointly infer the optimal parse tree and localize the semantic

attributes to the scene parts by dynamic programming (right

panel in Fig.1(b)). Then based on the inferred parse trees,

we re-estimate the HST/AOT model and attribute associa-

tion matrix. Thus, we integrate the parsing and attribute

localization under an uniform framework.

We evaluate the proposed method by showing: (i) The

semantic attributes are properly associated with the local

scene parts. (ii) Compared with traditional classification al-

gorithms, our method achieves better attribute recognition

performance. (iii) We improve the precision of attribute lo-

calization against a baseline sliding window method [10].

2. Related Work
Scene models For scene classification, there are four

typical representations. (i) Bag-of-Words (BoW) represen-
tation [11] treats a scene as a collection of visual words and

ignores the spatial information. (ii) Grid structure repre-
sentation, such as spatial pyramid matching [16], implicitly

adopt squares as elements in different sizes and locations

and divide the images into grids. (iii) Non-parametric rep-
resentation, such as label transfer [4], remembers all the

observed images and interprets the new data through near-

est neighbor search. All these representations miss the hi-

erarchical reconfigurable structures. (iv) The most related

work is the Hierarchical Space Tiling (HST) [17] which in-

troduced a scene hierarchy by the And-Or Tree (AOT) and

proposed a structure learning method to learn a scene part

dictionary and compact HST model. However, it relies on

the label maps as training samples. We extend [17] to take

raw images with text as input and associate scene attributes

to the learned scene part dictionary.

Scene attributes Beyond recognizing an individual

scene category, visual attributes are demonstrated as valu-

able semantic cues in various problems such as generat-

ing descriptions of unfamiliar objects [6]. Patterson and

Hays [7] proposed an attribute based scene representation

containing 102 binary attributes to describe the intra-class

scene variations (e.g. a canyon might have water or it might

not) and the inter-class scene relationships (e.g. both a

canyon and a beach could have water). Beside the binary

attributes, Parikh and Grauman [5] introduced the relative

attributes, e.g. more natural or less man-made, to provide

a semantically rich way describing and comparing scenes.

These attributes were learned and inferred at the image level

without localization. In contrast, we jointly parse the im-

ages into spatial configurations and localize the attributes,

which allows us to provide more accurate and detailed de-

scriptions.

Attributes localization In learning the relationships

between the attributes and specific image regions, we relate

to the recent work on object detection and localization. The

two communities of object localization include sliding win-

dow based methods and Multiple Instance Learning (MIL).

(i) The sliding window methods [10] operate by evaluat-

ing a classifier function at many different sub-windows of

the image and then predicting the object presence in sub-

windows with high-score. (ii) Multiple Instance Learning

(MIL) based algorithms [2, 3] view images as bags of seg-

ments. Then MIL trains a binary classifier to predict the

class of segments, under the assumption that each posi-

tive training image contains at least one true-positive seg-
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Figure 2. HST scene representation which consists of HST-geo and

HST-att.

ment. However, these approaches incur the problem faced

by the unreliable segmentation. The above methods can lo-

calize an individual object at a time, while our aim is pars-

ing the images into multiple objects/attributes simultane-

ously. Moreover, by considering the global compatibility,

our method will not confuse the objects with similar ap-

pearance (e.g. “blue ocean” and “blue sky”) as the above

methods did.

3. Representation: HST/AOT
As shown in Fig.2, we extend the original HST[17] to

two parts: (i) HST-geo which models the geometric ar-

rangements of the scenes, i.e. scene configurations, and (ii)

HST-att which models the appearance types of the scene

attributes and the correlations between the scene parts and

attributes.

For HST-geo, there are three types of nodes: Or-nodes
V OR, And-nodes V AND, and Terminal nodes V T .

The Or-nodes V OR, correspond to the grammar rules like

rOR : S → A|B|C, acting as “switches” between the pos-

sible compositions. The branching probabilities p(A|S),
p(B|S), p(C|S) indicate the preference for each compo-

sition and can be learned from the scene images in Sec-

tion.4.1.

The And-nodes V AND, correspond to the grammar rules

like rAND : C → D ·E, representing a fixed decomposition

from a node C into lower-level parts D and E. For simplic-

ity, we only divide the rectangular parts in horizontal and

vertical ways.

The terminal nodes V T , form a scene part dictionary

Δ = V T . At the bottom of the hierarchy, an image lattice is

divided into a n× n grid, and each cell is seen as an atomic

shape element of the dictionary. A number of the atomic

elements compose the higher-level terminal nodes at differ-

ent scales, locations and shapes. To avoid the combination

explosion, only regular shapes i.e., squares, rectangles are

allowed.

Beyond HST-geo, we combine the scene attributes to

represent both the geometry and semantics of the scenes.

Scene attributes come from the text descriptions of training

images which contain several noun+adjective phrases. The

nouns correspond to the objects in the scenes and the adjec-

tives correspond to the appearance. We model the HST-att

as a two level AOT. Each noun, acting as an appearance-Or

node, has a mixture of adjectives. And each terminal node

in HST-geo can link to a noun and further an adjective at-

tribute by an association matrix. The association matrix can

be learned in Section.4.2.

The HST is naturally recursive, starting from a root

which is an Or-node, generating the alternating levels of

And-nodes and Or-nodes, and stopping at the terminal

nodes with a specific appearance type (noun+adjective).

The And-Or structure defines a space of possible parse trees

and embodies probabilistic context free grammar (PCFG)

[15]. By selecting the branches at Or-nodes, a parse tree

pt is derived, e.g. the red and blue paths in Fig.2 represents

two parse trees as instances of the HST. When parse trees

collapse to the image lattice, they produce configurations.

The initial HST is excessive and generates a combina-

torial number of parse trees. In the learning process, we

maximize the likelihood subject to a model complexity and

prune out the branches with zero or low probability to ob-

tain a compact HST and the scene part dictionary.

4. Learning

4.1. Learning for the HST-geo

We define the HST-geo as a 4-tupe

HST-geo = (S, V N , V T ; Θ) (1)

where S is a start symbol at root. V N = V AND ∪NOR is a

set of non-terminal nodes including the And-nodes and Or-

nodes. V T is a set of terminal nodes forming the scene part

dictionary Δ = V T . Let v index the nodes; Ch(v) denote

the child node set of v. The parameters Θ are the branching

probabilities of each branch at the Or-nodes Θ = {θ(v →
vi); v ∈ V OR, vi ∈ Ch(v)}.

Given a set of training images I = {Im,m = 1...M},
in order to avoid the false compositions, e.g. sky and ocean

may be grouped wrongly into one region due to their sim-

ilar appearance, we first segment the images in multi-scale

in a coarse-to-fine manner so that we can focus the learning

on the label maps and thus separate the geometric config-

urations from appearance. Let C = {Cm,m = 1...M}
denotes the multi-scale segmentation. Cm = {Ck

m} in-

cludes |k| segmented layers. For each image, we adopt

[13] to obtain the multi-scale segmentation by tuning k ∈
300, 400, ..., 5000, where k is a variable controlling the

granularity of the segmentation (Fig.3). Then we select six

segmented layers of significant difference by comparing the
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Figure 3. Multi-scale segmentation. (a) Input image. (b) Segmen-

tations in different layers. The segmentations in the red frames

form a multi-scale segmentation C.

adjacent layers in pixels (red frames in Fig.3(b)), and com-

pose a multi-scale segmentation set C = {Ck, |k| = 6}.
The learning requires us to estimate the branching prob-

abilities Θ and scene part dictionary Δ by maximizing a

log-likelihood.

(Θ,Δ)∗ = argmax
Θ,Δ

log p(I; Θ,Δ) (2)

∝ argmax
Θ,Δ

M∑

m=1

log
∑

ptm,k

p(Ck
m, ptm; Θ,Δ)p(Im|Ck

m)

where log p(I|Ck) = −∑
c∈{R,G,B}

∑
r∈Ck σ2

c (I(r)),c is

a color channel, r is a segment in Ck, σ() returns the stan-

dard divination of the pixel intensities in a segment. This

term measures the pixel intensity homogeneity of the seg-

ments. p(Ck, pt; Θ,Δ) is the joint probability with Θ and

Δ being the parameters to be learned.

log p(Ck, pt; Θ,Δ) ∝ −E(Ck, pt; Θ,Δ) (3)

= −
∑

v∈V OR
pt ,vi∈Ch(v)

EOR(vi|v)− λ
∑

v∈V T
pt

ET (Ck
v |v)

where V OR
pt , V T

pt denote the Or-nodes and terminal nodes

in the pt, and λ is the parameter to balance the two terms

(λ = 0.25 in this paper). Ck
v denotes the segmented patch

covered by the terminal node v.

The energy for an Or-node is defined on its branching

probability, which favors the sub-structures that often make

a larger part. i.e.,

EOR(vi|v) = − ln θ(v → vi) (4)

The energy for a terminal node is defined as

ET (Ck
v |v) = − ln

1

|Ck
v |

∑

i∈Ck
v

[
lki = lkv

]
+ ln

k

|Ck
v |

(5)

where [·] is the indicator function. In the k-th layer, lki
is the segmentation label of pixel i and lkv is the dominant

label of the terminal node v. The first term measures the

homogeneity of the terminal nodes in terms of segmentation

labels and the second term penalizes large k.

Iterative learning of the HST-geo To maximize the

Eq.2, we adopt an iteratively learning-by-parsing strategy

including: (i) inferring the optimal parse tree pt by dy-

namic programming (optimize Eq.3); and (ii) estimating the

parameters Θ by a maximum likelihood estimator (MLE).

After it converges, those branches whose probabilities are

below a certain threshold (say 0.01) are pruned. Then we

collect the terminal nodes from all the parse trees to form a

scene part dictionary Δ. (see more details in [17]).

Terminal node local adjustment Although the scenes

from one category share similar spatial layouts, there are

still considerable variations/deformations in their configu-

rations. Hence, the terminal nodes are allowed to be lo-

cally adjustable to fit the scene region boundaries. We in-

troduce the perturbations in location, scale and orientation

denoted as δ(x) = [±8,±16], δ(s) = [1 ± 1
32 , 1± 1

16 ] and

δ(a) = [± π
48 ,± π

24 ], respectively. Thus the total number of

node activities is 12 in addition to the original one.

4.2. Learning for the HST-att

The text descriptions usually contain noun+adjective

phrases: The nouns indicate objects/regions inside a scene

(e.g. sky, field); and the adjectives describe their appearance

(e.g. overcast, green). Let A = {An,Aadj} denote the at-

tribute set, where An is the noun attribute set and Aadj is

the adjective attribute set.

We explore the relationship between a noun a ∈ An and

a scene part v ∈ Δ by an association matrix:

Φ : An ×Δ �→ [0, 1], s.t.
∑

a∈An

Φ(a, v) = 1, ∀v ∈ Δ (6)

where the entries of the rows in Φ are the noun attributes

and the columns are the scene parts, and we normalize each

columns to be one.

After learning the HST-geo in Section.4.1, each training

image has an optimal parse tree pt. Because the attributes

are annotated at the image level rather than the precise im-

age regions, we initialize Φ by counting all the combina-

tions of the nouns and the terminal nodes in pt:

Φ(a, v) =

M∑

m=1

[a ∈ An
m] · [v ∈ ptm] · φm(a, v) (7)

where An
m ⊆ An is the noun attribute set for an image, and

φm(a, v) denotes its association probability initialized by

φm(a, v) = 1.

We pursue Φ by a greedy non-maximum suppression.

The algorithm first selects an (a, v) pair which receives the

highest association probability: (a∗, v∗) = argmax(a,v) Φ,

and find the image set Ĩ ⊆ I having (a∗, v∗), i.e. Ĩ =
{Im; a∗ ∈ An

m, v∗ ∈ V T
ptm}. Then (i) suppress the associa-

tion between the selected attribute with other terminal nodes

except v∗: φm(a∗, v) = s×φm(a∗, v); v ∈ V T
ptm\v∗, Im ∈

Ĩ , where s = 0.3 is the suppression parameter; (ii) suppress

the association between the selected node with other noun

attributes: φm(a, v∗) = s× φm(a, v∗); a ∈ An
m\a∗, I ∈ Ĩ;

311231123114
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Figure 5. The adjective clusters belonging to the noun attributes.

(iii) update Φ by Eq.7. Repeatedly find the next maximum

(a, v) pair and do non-maximum suppression until no more

(a, v) pair can be selected. Finally, normalize each columns

in Φ to be one.

Fig.4 (left) shows the association of noun attributes and

scene parts, where the horizontal axis denotes the nodes in

HST-geo and the vertical axis denotes the normalized as-

sociation probability. For example, “sky” has highly prob-

ability with the nodes covering the top area of an image

and “horse” has highly probability with the nodes covering

the middle area of an image. To qualitatively evaluate the

association, for each noun attribute, we average the image

patches assigned to it. Interestingly, as illustrated in Fig.4

(right), although learning in a weakly supervised way, our

association shows the similar spatial priors of the object cat-

egories with [4] (see Fig.5 in [4]).

Fig.5 shows the image patches assigned to each noun

are then split into multiple clusters according to the given

adjectives. And we train a binary SVM classifier for each

noun+adjective attribute based on those image patches us-

ing color histogram feature and SIFT bag-of-words feature.

5. Joint inference and learning
Take the learned HST-geo and association matrix Φ as

an initialization, we infer pt+={pt,A} to simultaneously

achieve the optimal scene configuration pt and attribute as-

signment A={An,Aadj}, then re-estimate HST-geo and Φ.

Thus rewrite Eq.2 as:

(Θ,Δ,Φ)∗ = argmax
Θ,Δ

log p(I; Θ,Δ,Φ) (8)

∝ argmax
Θ,Δ

M∑

m=1

log
∑

pt+m

p(Im, pt+m; Θ,Δ,Φ)

Table 1. The learning algorithm

Algorithm Iterative HST-att Learning

Initialization
1 Learn HST-geo (optimize Eq.2)

2 Pursue Φ and train appearance models based on HST-geo

Jointly learn HST-att (optimize Eq.8)
3 Jointly infer pt+ with attribute localization (optimize Eq.9)

4 Update Θ and Δ in HST-geo (optimize Eq.2)

5 Update Φ and train appearance models based on pt+ (Eq.7)

6 Repeat 3 - 5 until convergence

pt+ is inferred from maximizing the joint probability

p(pt+, I; Θ,Δ,Φ) ∝ exp{−E(pt+, I; Θ,Δ,Φ)}.

E(pt+, I; Θ,Δ,Φ) (9)

=
∑

v∈V OR
pt ,vi∈Ch(v)

EOR(vi|v) + λ1

∑

v∈V T
pt ,a

n∈An

En(an|v)

+ λ2

∑

an∈An,aadj∈Aadj

Ea(aadj |an) + λ3

∑

v∈V T
pt ,a∈A

ET (a|Iv)

where Λ = {λ1, λ2, λ3} are the parameters balancing the

energy terms (Λ={0.7, 0.1, 2} in this paper). The first term

measuring the scene configuration prior is the same as Eq.4.

The second term measures the noun attribute association:

En(an|v) = − lnΦ(an, v) (10)

The third term is designed to model the co-occurrence of

a noun and an adjective attribute

Ea(aadj |an) = − ln p(aadj |an) (11)

where p(aadj |an) =
∑M

m=1 �[a
n∈An

m]�[aadj∈Aadj
m ]

∑M
m=1 �[a

n∈An
m]

encodes

the compatibility between a noun and an adjective and can

be counted from the given text phrases.

The forth term is an attribute specific data term which

represented by the image features of the terminal node,

ET (a|Iv) = −
1

|Iv|
ln p(a|Iv) (12)

where a = {aadj , an} denotes the noun+adjective attribute,

Iv is the image region occupied by v, F (·, ·) is a (strong)

classifier learnt by SVM and p(a|Iv) is given by p(a|Iv) =
− exp{F (Iv,a)}∑

a′ exp{F (Iv,a′)} .

Because of the tree structure of HST and the linear form

of Eq.9, the dynamic programming algorithm can be em-

ployed to infer the optimal parse tree with the attributes

(pt+)∗ = argminpt+ E(pt+, I; Θ,Δ,Φ).
Then based on the inferred pt+, the HST-geo (i.e., Θ

and Δ) and HST-att (including the association matrix Φ
and the appearance SVM classifiers) can be updated un-

der the learning-by-parsing framework [17]. We summa-

rize the entire learning procedure in Table.1, which contains

two aspects. (i) Learn HST-geo and Φ based on the multi-

scale segmentations as an initialization; and (ii) Re-estimate

HST-geo and HST-att based on the joint inference.
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Figure 6. Examples of dataset and the ground-truth for evaluation.

6. Experiments

6.1. Datasets

There are two series of datasets relate to our task: scene

datasets and image+text datasets. (i) For scenes, SUN

dataset [18] contains 130,519 images with 397 categories.

However, it is annotated at image level rather than specific

regions. LabelMe Outdoor (LMO) [4] contains 2,688 fully

annotated outdoor scene images. SUN Attribute database

[7] contains 14,000 outdoor and indoor scene images with

700 attributes. In this paper, we focus on the outdoor

scenes, while the indoor scenes are not treated because of

the large 3D geometric variations caused by the view point

changes. Moreover, some attribute types in [7], such as

functions and affordances (e.g. playing, cooking), defined

by human activities and recognized via human pose and ac-

tivity reasoning, are beyond our scope. Therefore we se-

lect a subset of the above datasets for evaluation. (ii) For

image+text, Kulkarni et al. [9] generate descriptions from

scratch based on detected object, attribute, and preposi-

tional relationships. Ordonez et al. [12] designed a SBU

Captioned Photo Dataset through retrieving thousands of

Flickr queries. Farhardi et al. [6] proposed the CORE

dataset including 2,800 images with segmentations and at-

tribute annotations for vehicles and animals. The above

datasets provide a multitude of descriptions for images that

are usually related to image content, however, they are not

designed specifically for the natural scenes. Most of them

focused on the objects, humans or the functional activities.

Furthermore, those datasets always do not share intrinsic

structures, in contrast, our goal is studying both the text de-

scriptions and image configurations.

Therefore, we have created a new outdoor scene dataset

as shown in Fig.6. The dataset (1226 images of 256 × 256
pixels in size) was selected from LMO [4] and SUN At-

tribute dataset [7]. To tolerate more objects (e.g., wild an-
imals), we also added some images collected from Google

images and Flickr, and got 12 categories in total. Text de-

scriptions were created by one author to ensure consistency

and are publicly available.1 Finally, we got the attribute

setAn={sky, flower, mountain, ibis, horse...}, Aadj={blue,
cloudy, rocky, snowy, brown...} which contains 17 noun at-

tributes and 30 noun+adjective attribute pairs in total. The

average number of noun+adjective pairs attached to each

image is 3. And for each noun+adjective pair, the average

image number is 96. The dataset is split into 645 images

for training (50 images per noun+adjective pair in average)

and the rest for testing. For the testing set, we also ask peo-

ple to localize the attributes through bounding box Bgdth as

ground truth for evaluating the part localization accuracy, as

it is shown at the bottom right panel of Fig.6.

6.2. Attribute Recognition

Baselines We first compare our method in attribute

recognition, which evaluates the accuracy of an attribute

presence in images. (i) cKernel+SVM: Xiao et al. [18]

showed the combined feature kernels result in a signifi-

cantly more powerful classifier than any individual kernel.

We compare a combined kernel generated from gist, dense

SIFT, HOG 2 × 2, self-similarity, and geometric context

color histogram (see [18] for detail) and train a binary SVM

classifier for each attribute. (ii) BoW+SPM: The spatial

pyramid matching (SPM) proposed by Lazebnik et al. [16]

partitions an image into increasingly finer spatial subregions

and computes the SIFT bag-of-words (BoW) feature from

each sub-region. (iii) HST-geo: To evaluate the contribu-

tion of attribute association, we also compare our method

with HST-geo [17]. Specifically, for a given image, we first

parse it from its multi-layer segmentation and classify each

terminal nodes in the parse tree by the classifiers trained in

(i).

Fig.7 shows the average precision (AP) for classifying

each attribute and the mean average precision (MAP) for the

entire attribute set is reported in Table.2. BoW+SPM shows

lower performance because the lack of color feature which

is a strong cue in scene attribute recognition. Though HST-

geo and cKernel+SVM share classifiers, cKernel+SVM per-

forms better because those classifiers are trained at the im-

age level while the testing inputs of HST-geo are just image

patches. Benefit from integrating scene geometry with at-

tributes, our method outperforms all others.

6.3. Attribute Localization

Baselines For attribute localization, we benchmark our

method against a fully supervised sliding window method

(SW-FS) [10]. SW-FS trains an attribute classifier using

ground truth bounding boxes as positive examples and ran-

dom rectangles from each negative image for negative data.

By treating localization as localized detection, the SW-FS

applies attribute classifiers subsequently to sub-images at

1http://www.stat.ucla.edu/∼shuo.wang/SceneAtt.rar
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Figure 7. Average precision of attribute recognition.

different locations and scales. The detected sub-windows

is ordered by the classification score and taken as indica-

tions for the presence of an attribute in this region by non-

maximum suppression with 0.3 overlap threshold. In ad-

dition, we also compare with HST-geo for evaluating the

attribute association.

Fig.8(b) shows the comparison of the benchmark meth-

ods with ours. Without the geometric constraint, (i) Certain

attributes will be confused by appearance (e.g. HST-geo lo-

cates “sky” at the bottom region in the first row of Fig.8(b)),

and (ii) The semantic region will be divided into fragments

(e.g. the “black-bison” in SW-FS). Fig.8(a) shows the at-

tributed parse trees and configurations generated from the

joint inference and Fig.8(c) shows more localization results.

We quantitatively evaluate the attribute localization per-

formance by following the procedure adopted in [18]. A

ground truth bounding box (Bgdth) annotated “blue sky”

implies if a localized bounding box (Bv) has at least

T % overlap with Bgdth, it can be correctly classified

as “blue sky”. Specifically, a correct localization has
area(Bv∩Bgdth)

area(Bv)
>= T . We do not care if the ground truth

window is larger than the localization, e.g. a “blue sky”

patch is correctly localized even if the ground truth “blue

sky” has much greater spatial occupation. In this experi-

ment, we set T % = 50%. The threshold of 50% is set

deliberately low to tolerate the inaccurate bounding box of

highly non-convex objects, e.g. steep mountain. We use 11-

point interpolated average precision [14] to evaluate the lo-

calization accuracy. The average precisions (AP) for each

attribute are shown in Fig.9. The mean average precision

(MAP) reported in Table.3 shows a surprising improvement

of attribute localization of our method.

7. Discussion and future work

This paper presents a weakly supervised method for

learning the scene configurations with attribute localiza-

tions. (i) We quantize the space of scene configurations by

an Hierarchical Space Tiling (HST) and utilize a learning-

by-parsing strategy to do parameter estimation; (ii) We dis-

cover the relationship between the scene parts and attributes

Table 2. The attribute recognition performance

cKernel+SVM BoW+SPM HST-geo HST-att

MAP(%) 64.48 53.11 51.67 67.58
Table 3. The attribute localization performance

SW-FS HST-geo HST-att

MAP(%) 33.88 32.55 50.22

(nouns and adjectives) by an association matrix; (iii) We

joint infer the scene configuration and attribute localiza-

tion by dynamic programming. Our experiments show the

promises in simultaneous parsing and localization. The at-

tributes used in this paper are related to local object and re-

gions, but there are also global attributes (style of the whole

parse tree) such as aesthetics, which we are studying in on-

going work by extending our model to an attribute grammar.
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